If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-92=0
a = 1; b = 0; c = -92;
Δ = b2-4ac
Δ = 02-4·1·(-92)
Δ = 368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{368}=\sqrt{16*23}=\sqrt{16}*\sqrt{23}=4\sqrt{23}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{23}}{2*1}=\frac{0-4\sqrt{23}}{2} =-\frac{4\sqrt{23}}{2} =-2\sqrt{23} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{23}}{2*1}=\frac{0+4\sqrt{23}}{2} =\frac{4\sqrt{23}}{2} =2\sqrt{23} $
| 4=4u-8 | | 7f+7(2–f)=168 | | 4+4c=12 | | -41x-13=77+90 | | n^2+0=0 | | 2g-12=4 | | -5^2-530-90x=0 | | 2g−12=4 | | u^2=32 | | (7)/(8)x-22=27 | | -14+4(3x+5)=7 | | 12=2x-40 | | -6(8-3n)=30+5n | | x/6−1/5=730 | | w^2-1=23 | | x*4+3=20 | | 20b+15^3=0 | | 5x-2|3+3x+2|7=2x | | -9/5m=25 | | 40=12w-7w | | 2n-14=32 | | x÷10=5 | | -5x^2-530-90x=0 | | -7(7b-2)=14+b | | t^2+t-132=0 | | 41/3+q=51/6 | | 3x+4+2x=5(x-2+7 | | -6{p+3}=-54 | | -7(7b-2)=18+b | | 7y+27+2y+7=90 | | 5x-2/3+3x+2/7=2x | | -5x^-530-90x=0 |